Spectral Deconvolution — Linear + Nonlinear

Drop CSV files (two columns: x, y). Raw spectrum first, then one or more basis spectra. Linear mode solves y ≈ Σ cᵢ · bᵢ(x) by least squares. Nonlinear mode fits parametric peaks (Gaussian / Lorentzian / pseudo‑Voigt) and optional baseline.

1) Raw Spectrum

2) Basis Spectra (1…∞)

Toggle which bases to include in the fit.

3) Options

Use a tiny λ (e.g., 1e-8 to 1e-4) if the system is ill‑conditioned; enable positivity to enforce NNLS.

Results & Plots (Linear)

Basis chosen
0
RMSE
Overlay: Raw (dots) vs Reconstructed (line)
Residuals: Raw − Reconstructed

Coefficients

Linear combination: y_fit(x) = Σ cᵢ · bᵢ(x)
#Basis nameCoefficient cᵢ

4) Nonlinear Deconvolution (Peaks)

Quick add: center at mid‑x, FWHM ≈ 2% of range, A ≈ 20% of (max−min)
#μ (center)FWHM wA (amp)η (Voigt)On

Results & Plots (Nonlinear)

Peaks used
0
RMSE
Overlay: Raw (dots) vs NL fit (line) + individual peaks (thin)
Residuals (Nonlinear)

Peak Parameters

#μFWHM wAη